👤

Explicati modulul     |х-2|               |1-х|                 |3х-6|           | 10-5х| urgent pina miine

Răspuns :

|x-2|=[tex] \left \{ {{x-2 , x-2 \geq 0} \atop {-(x-2),x-2<0}} \right. [/tex]
|x-2|=[tex] \left \{ {{x-2,x \geq 2} \atop {-x+2,x<2}} \right. [/tex]
|1-x|=[tex] \left \{ {{1-x, 1-x \geq 0} \atop {-(1-x),1-x<0}} \right. [/tex]
|1-x|=[tex] \left \{ {{1-x,x \leq 1 } \atop {-1+x,x>1}} \right. [/tex]   - aici am trecut asa,fiindca am inmultit cu -1 si s-a schimbat semnul si sensul inecuatiei
|3x-6|=[tex] \left \{ {{3x-6,3x-6 \geq 0} \atop {-(3x-6),3x-6<0}} \right. [/tex]
|3x-6|=[tex] \left \{ {{3x-6,x \geq 2} \atop {-3x+6,x<2}} \right. [/tex]
|10-5x|=[tex] \left \{ {{10-5x,10-5x \geq 0} \atop {-(10-5x),10-5x<0}} \right. [/tex]
|10-5x|=[tex] \left \{ {{10-5x,x \leq 2} \atop {-10+5x,x>2}} \right. [/tex]

am explicitat normal si am rezolvat fiecare conditie ca pe o inecuatie normala,ca sa am doar x la conditie