Ma ajutati la exercitiul 9 va rog?
![Ma Ajutati La Exercitiul 9 Va Rog class=](https://ro-static.z-dn.net/files/d00/1f60e98bb62c700b36145f75a9bd5340.jpg)
Răspuns:
a = 2^7•3^8+2^9•3^7+2^7•3^8
a = 2^7•3^7•(3+2²•1+1•3)
a = (2•3)^7•(3+4+3)
a = 6^7•10
a = 6^7•2•5 → divizibil cu 5.
EVERGREEN
Răspuns: Ai demonstrația mai jos
Explicație pas cu pas:
[tex]\bf a = 2^7\cdot3^8+2^9\cdot3^7+2^7\cdot3^8[/tex]
[tex]\bf a = 2^7\cdot3^7\cdot\Big(2^{7-7}\cdot3^{8-7}+2^{9-7}\cdot3^{7-7}+2^{7-7}\cdot3^{8-7}\Big)[/tex]
[tex]\bf a = 2^7\cdot3^7\cdot\Big(2^{0}\cdot3^{1}+2^{2}\cdot3^{0}+2^{0}\cdot3^{1}\Big)[/tex]
[tex]\bf a = 2^7\cdot3^7\cdot\Big(1\cdot3+4\cdot1+1\cdot3\Big)[/tex]
[tex]\bf a = 2^7\cdot3^7\cdot\Big(3+4+3\Big)[/tex]
[tex]\bf a = 2^7\cdot3^7\cdot 10[/tex]
[tex]\bf a = 2^7\cdot3^7\cdot 2\cdot 5[/tex]
[tex]\bf a = 2^{7+1}\cdot3^7\cdot 5[/tex]
[tex]\red{\boxed{~\bf a = 2^{8}\cdot3^7\cdot 5\implies ~a~~\vdots~~5~ }}[/tex]
[tex]==pav38==[/tex]