👤

[(2⁵)⁷+2³⁵:2³⁴]:2⁶+2³⁵+4²⁵:(16⁴:2)]​

Răspuns :

Răspuns:

[tex]( {2}^{5} )^{7} = {2}^{5 \times 7} = {2}^{35} [/tex]

[tex] {2}^{35} \div {2}^{34} = {2}^{35 - 34} = {2}^{1} = 2[/tex]

[tex]( {2}^{35} + 2) \div {2}^{6} = \frac{2( {2}^{34} + 1) }{ {2}^{6} } = \frac{ {2}^{34} + 1}{ {2}^{5} } [/tex]

[tex] {4}^{25} = ( {2}^{2} )^{25} = {2}^{50} [/tex]

[tex] {16}^{4} = ( {2}^{4} )^{4} = {2}^{16} [/tex]

[tex] {2}^{16} \div 2 = {2}^{16 - 1} = {2}^{15} [/tex]

[tex] {2}^{50} \div {2}^{15} = {2}^{35} [/tex]

[tex] \frac{ {2}^{34} + 1 }{ {2}^{5} } + {2}^{35} + {2}^{35} = \frac{ {2}^{34} + 1 + {2}^{40} + {2}^{40} }{ {2}^{5} } [/tex]

Sincer, cred că ai scris greșit exercițiul...

Răspuns:

Explicație pas cu pas:

[tex]\bf [(2^{5})^{7}+2^{35}:2^{34}]:2^{6}+2^{35}+[4^{25}:(16^{4}:2)]=[/tex]

[tex]\bf (2^{5\cdot7}+2^{35}:2^{34}):2^{6}+2^{35}+[(2^{2})^{25}:(2^{4})^{4}:2)]=[/tex]

[tex]\bf (2^{35}+2^{35}:2^{34}):2^{6}+2^{35}+[2^{2\cdot25}:(2^{4\cdot4}:2)]=[/tex]

[tex]\bf (2^{35}+2^{35-34}):2^{6}+2^{35}+[2^{50}:(2^{16}:2)]=[/tex]

[tex]\bf (2^{35}+2^{1}):2^{6}+2^{35}+[2^{50}:(2^{16}:2^{1})]=[/tex]

[tex]\bf (2^{35}+2^{1}):2^{6}+2^{35}+(2^{50}:2^{16-1})=[/tex]

[tex]\bf (2^{35}+2^{1}):2^{6}+2^{35}+(2^{50}:2^{15})=[/tex]

[tex]\bf (2^{35}+2^{1}):2^{6}+2^{35}+2^{50-15}=[/tex]

[tex]\bf (2^{35}+2^{1}):2^{6}+2^{35}+2^{35}=[/tex]

[tex]\bf (2^{35}+2^{1}):2^{6}+2\cdot 2^{35}=[/tex]

[tex]\bf (2^{35}+2^{1}):2^{6}+2^{36}[/tex]

Nu mai ai ce sa faci de aici. Asa rămâne