👤

Calculaţi (1−1/3+1/3^2−1/3^3+....−1/3^2011):(1−1/3^2012).

Răspuns :

Răspuns:

Folosim relatia: 1+a+a²+..+aⁿ = (1-aⁿ⁺¹)/(1-a)

a = -1/3

n = 2011

⇒ 1+(−1/3)+(-1/3)²+(-1/3)³+....+(−1/3)²⁰¹¹ = [1-(-1/3)²⁰¹²]/[1+1/3)

1+(−1/3)+(-1/3)²+(-1/3)³+....+(−1/3)²⁰¹¹ = (3/4)·[1-(1/3)²⁰¹²]

⇒ (1−1/3+1/3^2−1/3^3+....−1/3^2011):(1−1/3^2012) = (3/4)·[1-(1/3)²⁰¹²]/[1-(1/3)²⁰¹²] = 3/4