👤

Arătați ca 2a+1 este pătrat perfect, unde a=1+3+3*2+3*3+……+3*2019 (*= puterea)

Răspuns :

[tex]\displaystyle\\a=1+3+3^2+3^3+...+3^{2019}.\\3a=3+3^2+3^3+...+3^{2020}.\\3a-a=\boxed{2a=3^{2020}-1}.\\\underbrace{2a}_{3^{2020}-1}+1=3^{2020}-1+1=3^{2020}=(3^{1010})^2,~care~este~un~patrat~perfect.[/tex]