Răspuns:
24/25
Explicație pas cu pas:
1+2+3+...+n=n(n+1)/2
1/1*2=1/1 – 1/2, 1/2*3=1/2 – 1/3
1/[n(n+1)]=1/n - 1/(n+1)
√ [2(1+2+3+4+...+24)×(1/1*2 +1/2*3 +1/3*4 +..... +1/24*25)]
=√ [2(24*25)/2 ×(1/1-1/2 +1/2-1/3 +1/3-1/4 +..... +1/24-1/25)]
=√ [(24*25) ×(1/1-1/25)]
=√ [(24*25) ×(24/25)]
=24/25