👤

Se considera triunghiul ABC dreptunghic in A. Demonstrati ca au loc relatiile:
a) sinB+cosB=sinC+cosC
b) cosB+cisC=sinB+cosC
c) tgB+tgC=ctgB+ctgC
URGENTTT! VA ROG! ​


Răspuns :

Răspuns:

[tex]a) sinB+cosB=sinC+cosC\\[/tex]

[tex]\frac{AC}{BC}+\frac{AB}{BC}=\frac{AB}{BC}+\frac{AC}{BC}[/tex] "Adevarat"

[tex]b) cosB+sinC=sinB+sinC[/tex]

[tex]\frac{AB}{BC}+\frac{AC}{BC}=\frac{AC}{BC}+\frac{AB}{BC}[/tex] "Adevarat"

[tex]c) tgB+tgC=ctgB+ctgC[/tex]

[tex]\frac{AC}{AB}+\frac{AB}{AC}=\frac{AB}{AC}+\frac{AC}{AB}[/tex]"Adevarat"

Am lucrat in triunghiul din imagine:

Vezi imaginea Zicun