👤

3. Pe un cerc se consideră punctele A, B și C. Aflaţi măsurile unghiurilor triunghiului ABC, ştiind că măsurile arcelor AB, BC și CA sunt direct proporţionale cu numerele 2, 3 si 4.
ESTE URGENT !!!
DAU COROANĂ


Răspuns :

Răspuns:

[tex]\boxed{\mathbf{\angle A= 40^{\circ}}}[/tex]

[tex]\boxed{\mathbf{\angle B=60^{\circ}}}[/tex]

[tex]\boxed{\mathbf{\angle C = 80^{\circ}}}[/tex]

Explicație pas cu pas:

[tex]\mathbf{A,B,C \in C(O;r)}[/tex]

[tex]\mathbf{\bigg(\mathbf{\widehat{AB}; \widehat{BC}; \widehat{CA} \bigg)} d.p.(2;3;4)}[/tex]

[tex]\mathbf{\implies \dfrac{\widehat{AB}}{2}=\dfrac{\widehat{BC}}{3}=\dfrac{\widehat{CA}}{4} =k }[/tex]

[tex]\mathbf{\widehat{AB}=2k}[/tex]

[tex]\mathbf{\widehat{BC}=3k}[/tex]

[tex]\mathbf{\widehat{CA}=4k}[/tex]

[tex]\mathbf{m(\widehat{AB})+(\widehat{BC})+m(\widehat{CA})=m(C(O;r))=360^{\circ}}[/tex]

[tex]\mathbf{\implies 2k+3k+4k=360^{\circ}}[/tex]

[tex]\mathbf{\implies 9k=360^{\circ}\; |:9 \implies k=40^{\circ}}[/tex]

[tex]\mathbf{\widehat{AB}=2k=2 \cdot 40^{\circ}=80^{\circ}}[/tex]

[tex]\mathbf{\widehat{BC}=3k=3 \cdot 40^{\circ}=120^{\circ}}[/tex]

[tex]\mathbf{\widehat{CA}=4k=4 \cdot 40^{\circ}=160^{\circ}}[/tex]

[tex]\mathbf{\implies \widehat{AB};\, \widehat{BC} ;\, \widehat{CA}-unghiuri \; inscrise\: in \ cerc}[/tex]

[tex]\mathbf{\implies \angle A=\dfrac{\widehat{BC}}{2} =\dfrac{80^{\circ}}{2} =40^{\circ}}[/tex]

[tex]\mathbf{\implies \angle B=\dfrac{\widehat{AC}}{2}=\dfrac{120^{\circ}}{2}=60^{\circ} }[/tex]

[tex]\mathbf{\implies \angle C=\dfrac{\widehat{AB}}{2} =\dfrac{160^{\circ}}{2} =80^{\circ}}[/tex]

[tex]\star[/tex]

Bafta! :)

#copaceibrainly

Vezi imaginea Triunghiul1