Răspuns:
Explicație pas cu pas:
E(x)=3(x-3)-(x-3)(2x-1) dam factor comun pe (x-3)
==>E(x)=(x-3)*[3-(2x-1)
E(x)=(x-3)*(-6x+3)
E(x)=-6x^2-9+18x+3x=6x^2+21x-9(faci cu delta)
F(a)=(a+1)^2-3a(a+1)
Dam factor comun pe (a+1)
F(a)=(a+1)(a+1-3a)=(a+1)(-2a+1)=-2a^2+a-2a+1=-2a^2-a+1
G(x)=(x+2)(x+1)-(x+2)(2x-1)=(x+2)[(x+1)-(2x-1)=(x+2)*(-x)
H(x)=(x+1)^2-x(x+1)=(x+1)[(x+1)-x]=(x+1)