Răspuns :
[tex]\displaystyle\bf\\1\\\\\frac{(n+2)!}{n!}=56\\\\(n+2)!=n!(n+1)(n+2)\\\\\implies~\frac{(n+2)!}{n!}=\frac{n!(n+1)(n+2)}{n!}\\\\Rezolvare\\\\\\\frac{(n+2)!}{n!}=56\\\\\\\frac{n!(n+1)(n+2)}{n!}=56\\\\Simplificam~pe~n!\\\\(n+1)(n+2)=56\\\\(n+1)~si~(n+2)~sunt~numere~consecutive.\\Descompunem~numarul~56~in~produs~de~numere~consecutive.\\\\56=7\times8\\\\(n+1)(n+2)=7\times8\\\\\implies~n+1=7\\\\n=7-1\\\\n=\boxed{\bf6}[/tex]
Vă mulțumim că ați vizitat site-ul nostru web care acoperă despre Matematică. Sperăm că informațiile furnizate v-au fost utile. Nu ezitați să ne contactați dacă aveți întrebări sau aveți nevoie de asistență suplimentară. Ne vedem data viitoare și nu ratați să marcați.