👤

Calculați
[tex] \frac{1}{1 \times 2} + \frac{1}{2 \times 3 } + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + ... \frac{1}{100 \times 101} [/tex]


Răspuns :

Răspuns:

Explicație pas cu pas:

[tex]\frac{1}{1*2}+\frac{1}{2*3}+\frac{1}{3*4}+...+\frac{1}{99*100}+\frac{1}{100*101} =\frac{1}{1} -\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+ \frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}=\frac{1}{1}-\frac{1}{101}=\frac{101}{101}-\frac{1}{101}=\frac{100}{101} .[/tex]

Sper ca nu am gresit cv...

Vezi imaginea Almamiau