👤

SUBIECTUL 1
Fie a = 2019 +2. (1+2+3+ ... +2018).
a) Arătaţi ca a este pătrat perfect.
b) Aflaţi restul împărțirii numărului az-a la 2018.


Răspuns :

Răspuns:

a = 2019 +2×(1+2+3+ ... +2018)

a = 2019 + 2×2018×2019 : 2

a = 2019 + 2018×2019

a = 2019(1 + 2018)

a = 2019×2019

a = 2019²

(a² - a)/2018 =

= a(a - 1)/2018

avem ca a = 2019²

=  2019×2019

=  2019(1 + 2018)

= 2019 + 2018×2019

= 2018 + 1 + 2018×2019

= 2018(1 + 2019) + 1

= 2018×2020 + 1

a - 1 = 2018×2020 + 1 - 1 = 2018×2020

a(a - 1)/2018 = (2018×2020 + 1)2018×2020/2018 divizibil cu 2018

=> a(a - 1)/2018 rest 0

a) a= 2019+2•(1+2+3+...+2018)

[tex]a = 2019 + 2 \times \frac{2018 \times 2019}{2} [/tex]

[tex]a = 2019 + 2018 \times 2019[/tex]

[tex]a = 2019 \times (1 + 2018) [/tex]

a=2019•2019

a=2019²=> a= pătrat perfect

b)

[tex] \frac{ {a}^{2} - a }{2018} = \frac{a(a - 1)}{2018} = \frac{2019(2019 - 1)}{2018} = [/tex]

[tex] = \frac{2018 \times 2019}{2018} = > [/tex]

fractia e divizibila cu 2018, deci restul este 0.

Vă mulțumim că ați vizitat site-ul nostru web care acoperă despre Matematică. Sperăm că informațiile furnizate v-au fost utile. Nu ezitați să ne contactați dacă aveți întrebări sau aveți nevoie de asistență suplimentară. Ne vedem data viitoare și nu ratați să marcați.


Zone Alte intrebari