👤

Sa se determine restul impartirii numarului 1x2x3x4x...x69x70 +1234 la 2013

Răspuns :

[tex]2013=3*11*61; 1*2*3*...*70=(3*11*61)*1*2*4*5*...*70[/tex] [tex]=2013*1*2*4*5*...*10*12*13*...*60*62*...*70[/tex] 
Aplicam Teorema impartirii cu rest:
[tex]2013*1*2*4*5*...*70+1234=2013*c+r , r<2013[/tex]
Observam ca avem 2013 in ambii membri=>[tex] r=1234; c=1*2*4*5*...*9*10*12*13*...*60*62*...*70[/tex]