👤

Se considera functia f:R=>R , f(x)=[tex] x^{1004} + 2008^{x} [/tex] .
a) Sa se determine[tex] \int\ f[/tex](x)dx.


Răspuns :

[tex]\displaystyle\int\left(x^{1004}+2008^x\right)dx=\int x^{1004}dx+\int 2008^x dx=[/tex]
[tex]=\displaystyle\frac{x^{1004+1}}{1004+1}+\frac{2008^x}{\ln 2008}+C=[/tex]
[tex]=\displaystyle\frac{x^{1005}}{1005}+\frac{2008^x}{\ln 2008}+C[/tex]