Răspuns :
cos (2π/11) = 0,84
cos (4π/11) = 0,42
cos (6π/11) = -0,14
cos (8π/11) = -0,65
cos (10π/11) = -0,96
E= cos (2π/11) + cos (4π/11) + cos (6π/11) + cos (8π/11) + cos (10π/11) =
= 0,84 + 0,42 - 0,14 - 0,65 - 0,96 = -0,5 = -1 / 2
cos (4π/11) = 0,42
cos (6π/11) = -0,14
cos (8π/11) = -0,65
cos (10π/11) = -0,96
E= cos (2π/11) + cos (4π/11) + cos (6π/11) + cos (8π/11) + cos (10π/11) =
= 0,84 + 0,42 - 0,14 - 0,65 - 0,96 = -0,5 = -1 / 2
Fie numarul complex z=cos(2π/11)+isin(2π/11).Folosind formula lui Moivre obtinem:
z^11=cos2π+isin2π=1=>z^11-1=0=>
(z-1)(z^10+z^9+z^8+...+z+1)=0=>
z^10+z^9+z^8+...+z+1=0=>
z^10+z^9+z^8+...+z=-1=>
z+z^2+z^3+z^4+z^5=-1-(z^10+z^9+z^8+z^7+z^6)
Partea reala a numarului z^10 este cos(20π/11)=cos(22π/11-2π/11)=cos(2π-2π/11)=
=cos(2π/11) si este egala cu partea reala a lui z.
Analog se arata ca partile reale ale lui z^9,z^8,z^7,z^6 sunt egale cu partile reale ale numerelor z^2,z^3,z^4,z^5.In concluzie,
z+z^2+z^3+z^4+z^5=-1-(z+z^2+z^3+z^4+z^5)=>
z+z^2+z^3+z^4+z^5=-1/2
z^11=cos2π+isin2π=1=>z^11-1=0=>
(z-1)(z^10+z^9+z^8+...+z+1)=0=>
z^10+z^9+z^8+...+z+1=0=>
z^10+z^9+z^8+...+z=-1=>
z+z^2+z^3+z^4+z^5=-1-(z^10+z^9+z^8+z^7+z^6)
Partea reala a numarului z^10 este cos(20π/11)=cos(22π/11-2π/11)=cos(2π-2π/11)=
=cos(2π/11) si este egala cu partea reala a lui z.
Analog se arata ca partile reale ale lui z^9,z^8,z^7,z^6 sunt egale cu partile reale ale numerelor z^2,z^3,z^4,z^5.In concluzie,
z+z^2+z^3+z^4+z^5=-1-(z+z^2+z^3+z^4+z^5)=>
z+z^2+z^3+z^4+z^5=-1/2
Vă mulțumim că ați vizitat site-ul nostru web care acoperă despre Matematică. Sperăm că informațiile furnizate v-au fost utile. Nu ezitați să ne contactați dacă aveți întrebări sau aveți nevoie de asistență suplimentară. Ne vedem data viitoare și nu ratați să marcați.