Răspuns :
[tex] x^{2} [/tex] - 6x +9=0
coeficientul lui [tex] x^{2} [/tex] estea, coeficientul lui x este b si termenul liber este c adica ecuatia este de forma a[tex] x^{2} [/tex]+bx+c=0
delta= [tex] b^{2} [/tex] - 4ac
in cazul de fata : a=1, b= - 6, c= 9
delta=[tex] (-6)^{2} [/tex] - 4*1*9=36-36=0
daca delta =0 atunci solutiile ecuatiei sunt egale si anume x1=x2= - b/2a=6/2=3
daca delta este diferit de zero atunci exista 2 solutii de forma
x1=[tex] \frac{- b + \sqrt{delta} }{2a} [/tex]
x2=[tex] \frac{-b- \sqrt{delta} }{2a} [/tex]
coeficientul lui [tex] x^{2} [/tex] estea, coeficientul lui x este b si termenul liber este c adica ecuatia este de forma a[tex] x^{2} [/tex]+bx+c=0
delta= [tex] b^{2} [/tex] - 4ac
in cazul de fata : a=1, b= - 6, c= 9
delta=[tex] (-6)^{2} [/tex] - 4*1*9=36-36=0
daca delta =0 atunci solutiile ecuatiei sunt egale si anume x1=x2= - b/2a=6/2=3
daca delta este diferit de zero atunci exista 2 solutii de forma
x1=[tex] \frac{- b + \sqrt{delta} }{2a} [/tex]
x2=[tex] \frac{-b- \sqrt{delta} }{2a} [/tex]
Vă mulțumim că ați vizitat site-ul nostru web care acoperă despre Matematică. Sperăm că informațiile furnizate v-au fost utile. Nu ezitați să ne contactați dacă aveți întrebări sau aveți nevoie de asistență suplimentară. Ne vedem data viitoare și nu ratați să marcați.